Model for humidity-mediated diffusion on aluminum surfaces and its role in accelerating atmospheric aluminum corrosion

14 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Bare aluminum metal surfaces are highly reactive, which leads to the spontaneous formation of a protective oxide surface layer. Because many subsequent corrosive processes are mediated by water, the structure and dynamics of water at the oxide interface are anticipated to influence corrosion kinetics. Using molecular dynamics simulations with a reactive force field, we model the behavior of aqueous aluminum metal ions in water adsorbed onto aluminum oxide surfaces across a range of ion concentrations and water film thicknesses corresponding to increasing relative humidity. We find that the structure and diffusivity of both the water and the metal ions depends strongly on the humidity of the environment and the relative height within the adsorbed water film.Aqueous aluminum ion diffusion rates in water films corresponding to a typical indoor relative humidity of 30% are found to be more than two orders of magnitude slower than self-diffusion of water in the bulk limit. Connections between metal ion diffusivity and corrosion reaction kinetics are assessed parametrically with a reductionist model based on a 1D continuum reaction-diffusion equation. Our results highlight the importance of incorporating the properties specific to interfacial water in predictive models of aluminum corrosion.

Keywords

Aqueous Transport
Multiscale Modeling
Reactive Forcefields
Molecular Dynamics
Oxide Surfaces
Atmospheric Corrosion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.