Three cycles in the dioxomolybdenum-catalyzed reduction of nitrobenzenes to anilines with pinacol. A computational study towards the valorization of biomass subproducts.

14 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we use density functional theory to unravel the mechanism of the nitrobenzene to aniline reduction, catalyzed by dioxomolybdenum (VI) dichloride. The use of pinacol as an oxoaccepting reagent and the production of only acetone and water as byproducts, signals a novel and environmentally friendly way to add value to the oxygen-rich biomass-derived polyols. The reaction proceeds through three consecutive cycles, each one responsible for one of the three reductive steps needed to yield nitroaniline from nitrobenzene, with nitrosobenzene and benzylnitrene as intermediates. Each cycle regenerates the Mo(VI) catalyst and releases two acetone molecules. The mechanism involves singlet/triplet state crossings, a feature that has been found to be key in related polyoxomolibdate catalyzed processes. The role of the Mo-coordinated water, product of the reduction of pinacol, as the provider of the mysterious protons needed to reduce the nitro group, was revealed. The disclosure of this challenging mechanism and its rate limiting step can contribute to the design of more effective Mo(VI) catalysts.

Keywords

DFT
biomass valorisation
molybdenum
redox catalysis
pinacol
nitroarenes
two-state reactivity
pericyclic

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information including thermodynamic parameters, alternative steps and spin states is included.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.