Abstract
Redox flow batteries are a promising electrochemical technology for large-scale stationary energy storage.
Continuous macroscopic models address the design and operational challenges required to increase their
profitability and energy market penetration. Controlling the battery operating temperature and avoiding
cell overheating are two primary ways to ensure optimal overall efficiency. This work presents a nonisothermal
two-dimensional steady-state model of a unit-cell all-vanadium redox flow battery. The model
is validated using polarization and open circuit voltage measurements at different temperatures and states
of charge. After calibration, a parametric study is used to explore the role of operating temperature on cell
performance, deconvoluting the different contributions to cell heating, and providing practical guidance
about the thermal effects of operating conditions. The results reveal that increasing the operating
temperature improves species mass transfer but negatively affects activation losses; the cell suffers higher
overheating during charge than during discharge; and cell length has a proportional effect on cell heating.
Lastly, we propose the use of asymmetric electrolyte temperatures as a performance improvement strategy
for electrochemical storage systems hybridized with thermal energy storage. The results show that nonisothermal
models are a powerful tool for optimizing advanced electrochemical flow reactors in energy
storage devices.
Supplementary materials
Title
Supplementary Information
Description
Experimental set-up, volumetric source term of species, electrolyte properties and correlation fittings coefficients, sulfuric acid data at different temperatures, reproducibiloity of polarization measurements, additional polarization at 60% SOC, heat contributions for the operation with asymmetric electrolytes temperature and temperature profiles.
Actions