Multiple Helicenes Defected by Heteroatoms and Heptagons with Narrow Emissions and Superior Photoluminescence Quantum Yields

15 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The incorporation of heteroatoms and/or heptagons as the defects into helicenes expands the variety of chiroptical materials with novel properties. However, it is still challenging to construct novel boron-doped heptagon-containing helicenes with high photoluminescence quantum yields (PLQYs) and narrow full-width-at-half-maximum (FWHM) values. We report an efficient and scalable synthesis of a quadruple helicene 4Cz-NBN with two nitrogen-boron-nitrogen (NBN) units and a double helicene 4Cz-NBN-P1 bearing two NBN-doped heptagons, the latter could be formed via a two-fold Scholl reaction of the former. The helicenes 4Cz-NBN and 4Cz-NBN-P1 exhibit excellent PLQYs up to 99% and 65% with narrow FWHM of 24 nm and 22 nm, respectively. The emission wavelengths are tunable via stepwise titration experiments of 4Cz-NBN-P1 toward fluoride, enabling distinguished circularly polarized luminescence (CPL) from green, orange (4Cz-NBN-P1-F1) to yellow (trans/cis-4Cz-NBN-P1-F2) with near-unity PLQYs and broader circular dichroism (CD) ranges. The five structures of the aforementioned four helicenes were confirmed by single crystal X-ray diffraction analysis. This work provides a novel design strategy for construction non-benzenoid multiple helicenes exhibiting narrow emissions with superior PLQYs.

Keywords

Multipe Helicenes
Boron
Heptagon
Circularly Polarized Luminescence
Chiroptical

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The full experimental details and characterization methods can be found in the Supporting Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.