Dative bonding as a mechanism for enhanced catalysis on the surface of MoS2

08 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition-metal dichalcogenide (TMD) layers have been a subject of widespread interest as platforms for electronic devices. However, the low chemical activity of their basal plane results in several technological bottlenecks, including high contact resistance at TMDelectrode interfaces, difficult growth of high-quality gate-oxide layers, and challenging functionalization. The simplest, and perhaps only, approach to overcoming those limitations may be to exploit dative bonding. The effect can enhance binding on TMDs, since their chalcogen nonbonding lone-pair orbitals can function as electron donors. Therefore, it should also be able to impact the surface catalysis for reactions that produce acceptors. This computational study seeks to investigate whether S→P dative bonding may be an effective mechanism for catalysis on the surface of MoS2, and whether the sheet can be functionalized via chemical reactions enabled by the binding of PHn and PCln. The results show that the bonding facilitates the PH functionalization of MoS2. The interaction is strong (1.11 eV), making the whole process exothermic, and the activation energy notably reduced (from 2.08 to 0.5 eV). Furthermore, the mechanism is intrinsically selective, which could prove a vital feature for future advancements in TMD-based electronics, since it could steer selected processes toward surface functionalization or thin-film growth.

Keywords

molybdenum disulfide
transition metal dichalcogenides
catalysis
functionalization
surface interactions

Supplementary materials

Title
Description
Actions
Title
Optimized structures
Description
Supporting information includes the optimized structures of all adsorption configurations of PCl3@MoS2 and PH3@MoS2.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.