Towards the detection limit of electrochemistry: Studying anodic processes with a fluorogenic reporting reaction

08 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recently, shot noise has been shown to be an inherent part of all charge transfer processes, leading to a practical limit of quantification of 2100 electrons (~0.34 fC) (Curr. Opin. Electrochem. 2020, 22, 170177). Attainable limits of quantification are made much larger by greater background currents and insufficient instrumentation, which restricts progress in sensing and single-entity applications. This limitation can be overcome by converting electrochemical charges into photons, which can be detected with much greater sensitivity, even down to a single-photon level. In this work, we demonstrate the use of fluorescence, induced through a closed-bipolar set-up, to monitor charge transfer processes below the detection limit of electrochemical workstations. During this process, the oxidation of ferrocenemethanol (FcMeOH) in one cell is used to concurrently drive the oxidation of Amplex Red (AR), a fluorogenic redox molecule, in another cell. The spectroelectrochemistry of AR is investigated and new insights on the commonplace practise of using deprotonated glucose to limit AR photooxidation are presented. The closed-bipolar set-up was used to produce fluorescent signals corresponding to the steady-state voltammetry of FcMeOH on a microelectrode. Chronopotentiometry is then used to show a linear relationship between the charge passed through FcMeOH oxidation and the integrated AR fluorescence signal. The sensitivity of the measurements obtained at different timescales varies between 2200 - 500 electrons per detected photon. The electrochemical detection limit is approached using a diluted FcMeOH solution in which no current signal is observed. Nevertheless, a fluorescence signal corresponding to FcMeOH oxidation is still seen, and detection of charges down to 300 fC is demonstrated.

Keywords

limit of quantification
spectroelectrochemistry
bipolar electrochemistry
fluorescence
Amplex Red

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information for the manuscript entitled 'Towards the detection limit of electrochemistry: Studying anodic processes with a fluorogenic reporting reaction'
Actions
Title
Video S1
Description
Video showing the fluorescence observed during Figure 5 of the manuscript (lower quality for upload)
Actions
Title
Video S0
Description
Video showing the effect of photooxidation of Amplex Red (lower quality for upload)
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.