Rational Design of Near-infrared Fluorescent Carbon Nanotube Biosensors with Covalent DNA-Anchors

16 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Semiconducting single wall carbon nanotubes (SWCNTs) are versatile near infrared (NIR) fluorophores. They are non-covalently modified to create sensors that change their fluorescence when interacting with biomolecules. However, non-covalent chemistry has several limitations and prevents a consistent way to molecular recognition and reliable signal transduction. Here, we introduce a widely applicable covalent approach to create molecular sensors without impairing the fluorescence in the NIR (>1000 nm). For this purpose, we attach single-stranded DNA (ssDNA) via guanine quantum defects as anchors to the SWCNT surface. A connected sequence without guanines acts as flexible capture probe allowing hybridization with complementary nucleic acids. Hybridization modulates the SWCNT fluorescence and the magnitude increases with the length of the capture sequence (20 > 10 >> 6 bases). Incorporation of additional recognition units via this sequence enables a generic route to NIR fluorescent biosensors with improved stability. To demonstrate the potential, we design sensors for bacterial siderophores and the SARS CoV-2 spike protein. In summary, we introduce covalent guanine quantum defect chemistry as rational design concept for biosensors.

Keywords

nucleic acids
biosensors
carbon nanotubes
near-infrared fluorescence
quantum defects

Supplementary materials

Title
Description
Actions
Title
Supplementary Material: Rational Design of Carbon Nanotube Biosensors with Covalent DNA-Anchors
Description
The supplementary material contains a materials and methods section describing the performed experiments as well as additional figures of the sensor characterization.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.