Blue Organic Light-Emitting Diode with a Turn-on Voltage at 1.47 V

06 February 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Among the three primary colors, blue emission in organic light-emitting diodes (OLEDs) are highly important but very difficult to develop. OLEDs have already been commercialized; however, blue OLEDs have the problem of requiring a high applied voltage due to the high-energy of blue emission. Herein, an ultralow voltage turn-on at 1.47 V for blue emission with a peak wavelength at 462 nm (2.68 eV) is demonstrated in an OLED device. This OLED reaches 100 cd/m2, which is equivalent to the luminance of a typical commercial display, at 1.97 V. Blue emission from the OLED is achieved by the selective excitation of the low-energy triplet states at a low applied voltage by using the charge transfer (CT) state as a precursor and the triplet-triplet annihilation, which forms one emissive singlet from two triplet excitons. We found that the essential component for efficient blue emission is a smaller energy difference between the CT state and triplet exciton, accelerating the energy transfer between the two states and achieving the optimal performance by avoiding direct decay from the CT state to the ground state. Our study demonstrates that the developed OLED allows for a much longer operation lifetime than that from a typical blue phosphorescent OLED because the blue emission originates from a stable low-energy triplet exciton that avoids degrading the constituent materials.

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.