Precise, orthogonal remote-control of cell-free systems using photocaged nucleic acids

02 February 2023, Version 1


Cell-free expression of a gene to protein has become a vital tool in nanotechnology and synthetic biology. Remote-control of cell-free systems with multiple, orthogonal wavelengths of light would enable precise, non-invasive modulation, opening many new applications in biology and medicine. While there has been success in developing ON switches, the development of OFF switches has been lacking. Here, we have developed orthogonally light-controlled cell-free expression OFF switches by attaching nitrobenzyl and coumarin photocages to antisense oligonucleotides. These light-controlled OFF switches can be made from commercially available oligonucleotides and show a tight control of cell-free expression. Using this technology, we have demonstrated orthogonal degradation of two different mRNAs, depending on the wavelength used. By combining with our previously generated blue light-activated DNA template ON switch, we were able to start transcription with one wavelength of light and then halt the translation of the corresponding mRNA to protein with a different wavelength, at multiple timepoints. This precise, orthogonal ON and OFF remote-control of cell-free expression will be an important tool for the future of cell-free biology, especially for use with biological logic gates and synthetic cells.


Supplementary materials

Supplementary Information
Supplementary Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.