A “short blanket” dilemma for a state-of-the-art neural network potential for water: Reproducing experimental properties or the physics of the underlying many-body interactions?

01 February 2023, Version 5
This content is a preprint and has not undergone peer review at the time of posting.


Deep neural network (DNN) potentials have recently gained popularity in computer simulations of a wide range of molecular systems, from liquids to materials. In this study, we explore the possibility of combining the computational efficiency of the DeePMD framework and the demonstrated accuracy of the MB-pol data-driven many-body potential to train a DNN potential for large-scale simulations of water across its phase diagram. We find that the DNN potential is able to reliably reproduce the MB-pol results for liquid water but provides a less accurate description of the vapor-liquid equilibrium properties. This shortcoming is traced back to the inability of the DNN potential to correctly represent many-body interactions. An attempt to explicitly include information about many-body effects results in a new DNN potential that exhibits opposite performance, being able to correctly reproduce the MB-pol vapor-liquid equilibrium properties but losing accuracy in the description of the liquid properties. These results suggest that DeePMD-based DNN potentials are not able to correctly "learn" and, consequently, represent many-body interactions, which implies that DNN potentials may have limited ability to predict properties for state points that are not explicitly included in the training process. The computational efficiency of the DeePMD framework can still be exploited to train DNN potentials on data-driven many-body potentials, which can thus enable large-scale, "chemically accurate" simulations of various molecular systems, with the caveat that the target state points must have been adequately sampled by the reference data-driven many-body potential in order to guarantee a faithful representation of the associated properties.


neural network potentials
data-driven models
many-body interactions
molecular interactions
aqueous solutions
chemical accuracy
coupled cluster theory

Supplementary materials

Supplementary Material
Details on the deep neural network potentials along with additional analyses, tables, and figures.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.