Synthesis of biolabile thioalkyl-protected phosphates from an easily accessible phosphotriester precursor

27 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Phosphates are regularly incorporated into bioactive small molecules, for example in sugar-1-phosphate derivatives that are used for metabolic oligosaccharide engineering. To enable efficient cellular uptake, the phosphate groups are commonly masked with biolabile S-acyl-2-thioethyl (SATE) protecting groups that are removed once the molecule is inside the cell. Typically, SATE-protected monophosphates are synthesised through phosphoramidite chemistry, which suffers from issues with hazardous and unstable reagents and can give unreliable yields. Here, we report the development of an alternative approach that makes use of an easy to synthesise tri(2-bromoethyl)phosphotriester precursor, providing access to bis-SATE-protected mixed phosphotriesters in two steps. We demonstrate the viability of our strategy on tetrabenzylated glucose as a model monosaccharide, onto which a bis-SATE-protected phosphate is introduced at either the anomeric position or at C6. We also show compability with various protecting groups and further explore the scope and limitations of the approach on different substrates, including N-acetylhexosamines and amino acid derivatives.


Sugar phosphate
metabolic oligosaccharide engineering
mixed phosphate

Supplementary materials

Supporting Information
Data of optimisation experiments, experimental procedures for substrates and NMR spectra of all new compounds


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.