The promotional role of Mn in CO2 hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach

24 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rh-based catalysts modified by transition metals have been intensely studied for CO2 hydrogenation due to their high activity. However, understanding the role of promoters at the molecular-level remains challenging due to the ill-defined structure of heterogeneous catalysts. Here, we constructed well-defined RhMn@SiO2 and Rh@SiO2 model catalysts via surface organometallic chemistry combined with thermolytic molecular precursors (SOMC/TMP) approach to rationalize the promotional effect of Mn in CO2 hydrogenation. We found that the addition of Mn shifts the products from almost pure CH4 to a mixture of methane and oxygenates (CO, CH3OH, and CH3CH2OH) upon going from Rh@SiO2 to RhMn@SiO2. In situ X-ray absorption spectroscopy (XAS) confirms that the MnII is atomically dispersed in the vicinity of metallic Rh nanoparticles, and enables to induce the oxidation of Rh to form Mn-O-Rh interface under reaction conditions. The formed interface is key to maintain Rh+ site to promote the formation of CO, CH3OH and CH3CH2OH.

Keywords

SOMC/TMP
CO2 hydrogenation
Rh-based catalysis
in situ XAS
heterogeneous catalysis

Supplementary materials

Title
Description
Actions
Title
The promotional role of Mn in CO2 hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach
Description
Details of supplementary characterization and data have been included in the supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.