Abstract
Supercapacitive Swing Adsorption (SSA) modules with bipolar stacks having 2, 4, 8 and 12 electrode pairs made from BPL 4x6 activated carbon were constructed and tested for carbon dioxide capture applications. Tests were performed with simulated flue gas (15%CO2 /85%N2) at 2, 4, 8 and 12 V, respectively. Reversible adsorption with sorption capacities (~58 mmol·kg-1) and adsorption rates (~38 µmol·kg-1·s-1) were measured for all stacks. The productivity scales with the number cells in the module, and increases from 70 to 390 mmol.h-1m-2. Energy efficiency and the energy consumption improved with increasing number of electrodes from 67% to 84%, and 142 to 60 kJ·mol-1, respectively. Overall, the results show that SSA modules with bipolar electrodes can be scaled without reducing the adsorptive performance, and with improvement of energetic performance.
Supplementary materials
Title
Supplementary Materials.
Description
Suppplementary Materials Pertaining the Scaling of Supercapacitive Swing Adsorption of CO2 using Bipolar electrode stacks.
Actions