A Scalable Total Synthesis of Portimine A and B Reveals the Basis of Their Potent and Selective Anti-cancer Activity

19 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Marine derived cyclic imine toxins, portimine A and B, have attracted extensive attention owing to their intriguing chemical structure and promising anti-cancer therapeutic potential. However, access to large quantities is currently unfeasible and the molecular mechanism behind their potent activity is unknown. To address this, a scalable 15-step total synthesis of portimines is presented, which benefits from the logic used in two-phase terpenoid synthesis along with unique tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through “self-protection”. Critically, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency. Finally, practical access to the portimines and analogs thereof simplified the development of photoaffinity analogs, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.

Keywords

Total synthesis
target identification
Natural product
chemical proteomics
portimines

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Experimental procedure, NMR spectra
Actions
Title
Table S6 and S7
Description
Raw proteomics data
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.