Size and Composition Dependent Electronic, Structural and Optical Properties of Transition Metal Dichalcogenide Nanoflakes

19 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nanoparticles and nanostructures of two-dimensional semiconductors are being explored for their potential in photocatalysis, opto-electronics, and energy harvesting applications. Herein, we investigate the size and compo- sition dependence of electronic, structural, and optical properties of triangular transition metal dichalcogenide (MX2, M=Mo, W and X=S, Se, Te) nanoflakes. Structural optimizations reveal that, while all flakes undergo dimerization of X atoms along each edge, in large WS2 flakes the edge S form trimers. All flakes are found to be metallic with dominant contributions to the conducting states from the edges. Our time-dependent density functional theory-based calculations find both surface (2D) and edge (1D) plasmonic exictations at low ener- gies in all small flakes. However, only Se containing flakes are found to support edge plasmons at all sizes. The corresponding plasmon peaks exhibit a red-shift with flake size as expected from quantum confinement effects. Supported by induced charge-density and potential analyses, transition contribution maps as well as trends in generalized plasmonicity indices of the excitations, these findings assume significance given the role of plasmonic nanostructures in the aforementioned applications.


2-d materials
nano materials
optical properties

Supplementary materials

Supplementary Material to the Manuscript
This file contains supporting information related to geometrical changes and projected density of states in some flakes (MoS2, MoSe2 and WS2) as well as transition contribution maps, induced density and induced potentials at various resonances of all flakes considered in the work. Tables of the calculated Generalised Plasmonicity Index for various flakes have also been included here.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.