Performance of common density functionals for excited states of tetraphenyldibenzoperiflanthene

10 January 2023, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Time-dependent density functional theory is the method of choice to efficiently calculate excitation spectra with the functional and basis set choice allowing to compromise between accuracy and computational cost. In this work the performance of different functionals as well as the second-order approximate coupled cluster singles and doubles model CC2 is evaluated by comparing the results to experimental results of the example molecule tetraphenyldibenzoperiflanthene (DBP). Functional choice has a significant impact on the spectrum of DBP. The performance of a number of different functionals was evaluated, quantified, and, where possible, discussed. The best functional, tuned-CAM-B3LYP, is used to investigate DBP on a surface of hexagonal boron nitride (h-BN). The resulting spectrum shows excellent agreement with experimental results for a monolayer of DBP on h-BN.

Keywords

Density functional theory
excitation spectra
surface

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.