Tuning the Mechanical Properties of Dicyanamide-Based Molecular Perovskites

29 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

ABX3 molecular perovskites have recently gained attention in the field of ferroelectrics and barocalorics where the materials’ mechanical properties such as mechanical stability, compressibility, hardness, and elasticity are important performance criteria. Akin to previous work on ceramic perovskites, research on molecular perovskites benefits from the modular building principle of the perovskite motif, enabling systematic studies to learn about the interplay of chemical composition, structure, and properties. Here we use the molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 (nPr = –(C3H7) and M2+= Mn, Co, Fe, Ni, Zn, Cd, Ba, Sr, Ca, Hg, or Mg) as a model system to study the impact of the M2+ metal species on the mechanical properties via lattice dynamic calculations and high-pressure powder X-ray diffraction. By using the bulk modulus as a proxy, we observe a relationship between geometric factors and mechanical properties that agree with chemical intuition. The results present a step forward for gradually refining our understanding of these materials, and contribute to the long-term goal, the design of material with targeted macroscopic properties.

Keywords

molecular perovskites
high-pressure diffraction
mechanical properties
bulk modulus

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.