Neuroprotective and antibacterial effects of phlorotannins isolated from the cell walls of brown algae Fucus vesiculosus and Pelvetia canaliculata

15 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Phaeophyceae (brown algae) essentially contribute to biotopes of cold and temperate seas. Their thalli are rich in biologically active natural products which are strongly and universally dominated with phlorotannins – polyphenols of complex and diverse structure based on multiple differently arranged phloroglucinol units. These electron-rich compounds are strong antioxidants with antimicrobial, anti-inflammatory and neuroprotective activities. In the algal cells phlorotannins can either accumulate in cytoplasm or can be secreted into the cell wall (CW) with subsequent covalent binding to the alginate network. The biological activities of easily extractable intracellular phlorotannins were comprehensively characterized, whereas the properties of the CW-bound polyphenol fraction are still mostly unknown. Recently, we identified dibenzodioxin bonding as the principal structural feature of the CW-bound phlorotannins of fucoid algae, whereas soluble intracellular phlorotannins relied on aryl- and ether bonds. However, profiles of biological activity associated with these structural differences are still unknown. Therefore, here, to the best of our knowledge, for the first time, we address the antioxidant, cytotoxic, neuroprotective, and antibacterial properties of the CW-bound phlorotannin fractions isolated from two representatives of the order Fucales - Fucus vesiculosus and Pelvetia canaliculata. The CW-bound phlorotannins appeared to be softer antioxidants, stronger antibacterial agents and were featured with essentially less cytotoxicity in comparison to the intracellular fraction. However, the neuroprotective effects of both sub-cellular phlorotannin fractions of F. vesiculosus and P. canaliculata were essentially similar. Thus, due to their lower cytotoxicity, CW-bound phlorotannins can be considered as promising antioxidants and neuroprotectors.

Keywords

Alzheimer disease
antibacterial
antioxidant
anti-neurodegenerative
brown algae
cell culture
cell wall-bound phlorotannins
neuroprotective
Parkinson disease
Phaeophyceae
phlorotannins

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.