Relativistic coupled-cluster study of SrF for low-energy precision tests of fundamental physics

13 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

SrF, being a laser-coolable molecule, can be an interesting system for spectroscopic tests of fundamental physics. We present an electronic structure study of this molecule within the four-component relativistic coupled-cluster singles and doubles (RCCSD) framework and employ the RCCSD-based methods to compute its molecular-frame dipole moment and core properties such as hyperfine structure coupling constant and molecular P, T -odd electronic structure parameters that are of great importance for the high-precision tests of fundamental physics. The impact of basis set size, Hamiltonian and nuclear model on the property calculation of SrF is also investigated. The computed results are in good agreement with the available experimental values. The present study shows that the SrF molecule could be useful for high-precision molecular experiments to explore physics beyond the Standard Model of elementary particles.

Keywords

Hyperfine Structure
Molecular Spectroscopy
CP Violation
Relativistic Effects
Coupled Cluster Theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.