Optical tactile sensor using scattering inside sol–gel-derived flexible macroporous monoliths

09 December 2022, Version 4
This content is a preprint and has not undergone peer review at the time of posting.


Tactile sensors are an essential technology for robots, and various types have been developed. This paper reports on a new optical tactile sensor based on multiple scattering in a porous material with a viscoelastic phase-separated structure fabricated by a sol–gel method. When a macroporous silicone monolith with a few micrometer diameter skeletons was compressed, the diffuse light intensity near the light source was reduced due to Mie multiple scattering. This light intensity change was opposite to the behavior of conventional polymer foams (cellular structures), which have a large structural scale. A simple tactile sensor using a macroporous monolith and a photo reflector was fabricated based on this finding. The skeleton diameter was an important factor for the sensor. In the case of macroporous silicones, the voltage-strain curve showed an almost hysteresis-free clear response. However, the response of macroporous polymethylmethacrylate monolith with a smaller skeleton diameter was weak due to low Mie scattering intensity. Sensors using sol–gel derived macroporous materials have the potential to be thinner and provide improved surface tactile sensation compared to foam materials.


macroporous monoliths
Mie scattering
optical tactile sensor

Supplementary materials

Supporting Information
Movie list, schematic and photos of the optical tactile sensors, and the sample codes.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.