A 5V-class Cobalt-free Battery Cathode with High Loading Enabled by Dry Coating

08 December 2022, Version 1

Abstract

Transitioning toward more sustainable materials and manufacturing methods will be critical to continue supporting the rapidly expanding market for lithium-ion batteries. Meanwhile, energy storage applications are demanding higher power and energy densities than ever before, with aggressive performance targets like fast charging and greatly extended operating ranges and durations. Due to its high operating voltage and cobalt-free chemistry, the spinel-type LiNi0.5Mn1.5O4 (LNMO) cathode material has attracted great interest as one of the few next-generation candidates capable of addressing this combination of challenges. However, severe capacity degradation and poor interphase stability have thus far impeded the practical application of LNMO. In this study, by leveraging a dry electrode coating process, we demonstrate LNMO electrodes with stable full cell operation (up to 68% after 1000 cycles) and ultra-high loading (up to 9.5 mAh/cm2 in half cells). This excellent cycling stability is ascribed to a stable cathode-electrolyte interphase, a highly distributed and interconnected electronic percolation network, and robust mechanical properties. High-quality images collected using plasma focused ion beam scanning electron microscopy (PFIB-SEM) provide additional insight into this behavior, with a complementary 2-D model illustrating how the electronic percolation network in the dry-coated electrodes more efficiently supports homogeneous electrochemical reaction pathways. These results strongly motivate that LNMO as a high voltage cobalt-free cathode chemistry combined with an energy-efficient dry electrode coating process opens the possibility for sustainable electrode manufacturing of cost-effective and high-energy-density cathode materials.

Keywords

Li-ion batteries
High voltage cathode
Thick electrode
Dry electrode
Plasma focused ion beam
2D Modeling

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
This file contains supplementary information for the main text such as method steps, graphs and results analysis.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.