Understanding How Metal-Ligand Coordination Enables Solvent Free Ionic Conductivity in PDMS

08 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Ionically conductive polymers are commonly made of monomers containing high polarity moieties to promote high ion dissociation, like poly(ethylene oxide) (PEO), polyvinylidene difluoride (PVDF), poly(vinyl alcohol) (PVA). However, the glass transition temperature ($T_g$) of these polymers are relatively high, and therefore yields a glassy state at room temperature and limits the mechanical flexibility of the material. Although polydimethylsiloxane (PDMS) has many attractive physical and chemical properties, including low glass transition temperature, mechanical flexibility, and good biocompatibility, its low dielectric constant suppresses ion dissociation. In this paper, we overcome this shortage by functionalizing the PDMS with ligands that can form labile coordination with metal ions, which greatly promotes the ion dissociation and improves the ionic conductivity by orders of magnitude. By combining an experimental study with a fully atomistic molecular dynamics simulation, we systematically investigated the ion transport mechanisms in this low $T_g$, low intrinsic conductivity material.


conducting polymer
ion clustering
ion transport mechanism

Supplementary materials

Supplemental Information of "Understanding How Metal-Ligand Coordination Enables Solvent Free Ionic Conductivity in PDMS"
Supplemental materials for the experimental results, molecular dynamics simulation methods and structures.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.