Glolloc: Mixture of Global and Local Experts for Molecular Activity Prediction

06 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantitative structure-activity relationships (QSAR) models have been used for decades to predict the activity of small molecules, using encodings of the molecular structure, for which simple 2D descriptors of the molecular graph are still most commonly used. One of the recurrent problems of QSAR is that relationships observed for a specific scaffold (pruned molecular skeleton) are often not transferable to another; this is often addressed by building several local models from subsets of the chemical space. Similarly, single task models sometimes outperform large multi-task models in predicting the activity of small molecules against specific proteins. In this paper, we introduce Glolloc, a global-local MoE-QSAR architecture, based on a Mixture of Experts (MoE) framework. Glolloc combines predictions from global and local experts, provides a built-in model introspection tool, can enhance model performance, and removes the need to maintain several local models. Published at the MLDD workshop, ICLR 2022.

Keywords

QSAR
local models
global models
mixture of experts
MoE

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.