Visualizing the residue interaction landscape of proteins by temporal network embedding

06 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Characterizing the structural dynamics of proteins with heterogeneous conformational landscapes is crucial to understanding complex biomolecular processes. To this end, dimensionality reduction algorithms are used to produce low-dimensional embeddings of the high-dimensional conformational phase space. However, identifying a compact and informative set of input features for the embedding remains an ongoing challenge. Here, we propose to harness the power of Residue Interaction Networks (RINs) and their centrality measures, established tools to provide a graph theoretical view on molecular structure. Specifically, we combine the closeness centrality, which captures global features of the protein conformation at residue-wise resolution, with EncoderMap, a hybrid neural-network autoencoder/multidimensional-scaling like dimensionality reduction algorithm. We find that the resulting low-dimensional embedding is a meaningful visualization of the residue interaction landscape that resolves structural details of the protein behavior while retaining global interpretability. This feature-based graph embedding of temporal protein graphs makes it possible to apply the general descriptive power of RIN formalisms to the analysis of protein simulations of complex processes such as protein folding and multi-domain interactions requiring no protein-specific input. We demonstrate this on simulations of the fast folding protein Trp-Cage and the multi-domain signalling protein FAT10. Due to its generality and modularity, the presented approach can easily be transferred to other protein systems.

Keywords

Residue interaction networks
Molecular dynamics
Protein simulation
Dimensionality reduction
Network centralities

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.