Evidence for Ligand- and Metal-Centered Reduction in Polypyridyl Dicarboxylate Complexes of Ru(II) and U(VI)

06 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Polypyridyl dicarboxylates have been established as oxidatively robust ligands capable of effectively binding heavy metals, but the reductive electrochemical properties of complexes supported by these ligands have not been explored to date. Here, the redox properties of Ru(II) and uranyl(VI) (UO22+) complexes of 2,2′-bipyridyl-6,6′-dicarboxylate (bdc), 2,2′:6′,2″-terpyridyl-6,6″-dicarboxylate (tdc), and 4′-phenyl-2,2′:6′,2″-terpyridyl-6,6″-dicarboxylate (Phtdc) have been investigated, revealing that these ligands can enable both ligand- and metal-centered reductions. In control ruthenium complexes, electrochemical and spectroelectrochemical data supported by theoretical findings from density functional theory suggest electron density in the reduced forms primarily resides on the ligands. In bdc complexes of uranyl, electrochemical data and theoretical findings support the involvement of both ligand- and metal-centered reductive behavior. This “non-innocent” redox chemistry, along with support for the assertion that these ligands bind large metals effectively, suggests that polypyridyl dicarboxylates could be useful in new schemes for reductive activation of challenging metal-containing species. The observation of ligand-centered reduction events is also in agreement with the recognized “non-innocent” redox activity of related 2,2′-bipyridyl systems that lack appended carboxylate functionalities.

Keywords

ruthenium
uranyl
bipyridyl
ligand noninnocence

Supplementary materials

Title
Description
Actions
Title
Supporting Information Document
Description
Supporting Information Document
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.