Light-controlled cell-free protein synthesis using phosphorothioate-caged antisense oligonucleotides

05 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cell-free expression of a gene to protein has become a vital tool applied in DNA nanodevices and synthetic cells. Antisense oligonucleotides are often used to induce gene knockdown; however, they have been underexplored for cell-free applications. Developing methods to non-invasively control gene knockdown with antisense oligonucleotides will be crucial for their precise regulation of cell-free biology and biotechnology. Here, we report a mild method for selectively attaching photoremovable protecting groups, photocages, onto phosphorothioate linkages of antisense oligonucleotides. Using this photocaging method, upon illumination, the original phosphorothioate antisense oligonucleotide is reformed. Photocaged antisense oligonucleotides, containing mixed phosphorothioate and phosphate backbones, showed a drastic reduction in duplex formation and RNAse H activity, which was recovered upon illumination. For the first time, we demonstrated that photocaged antisense oligonucleotides can be used to control cell-free protein synthesis. This technology will have future applications in light-activated biological logic gates and controlling the activity of synthetic cells.

Keywords

antisense oligonucleotide
cell-free protein synthesis
gene knockdown
light-activation
phosphorothioate
photocage

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.