Effect of Polymer Composition and Morphology on Mechanochemical Activation in Nanostructured Triblock Copolymers

02 December 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The effect of composition and morphology on mechanochemical activation in nanostructured block copolymers was investigated in a series of poly(methyl methacrylate)block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) (PMMA-b-PnBA-b-PMMA) triblock copolymers containing a force-responsive spiropyran unit in the center of the rubbery PnBA midblock. Triblock copolymers with identical PnBA midblocks and varying lengths of PMMA end blocks were synthesized from a spiropyran-containing macroinitiatior via atom transfer radical polymerization, yielding polymers with volume fractions of PMMA ranging from 0.21 to 0.50. Characterization by transmission electron microscopy revealed that the polymers self-assembled into spherical and cylindrical nanostructures. Simultaneous tensile tests and optical measurements revealed that mechanochemical activation is strongly correlated to the chemical composition and morphologies of the triblock copolymers. As the glassy (PMMA) block content is increased, the overall activation increases, and the onset of activation occurs at lower strain but higher stress, which agrees with predictions from our previous computational work. These results suggest that the self-assembly of nanostructured morphologies can play an important role in controlling mechanochemical activation in polymeric materials, and provide insights into how polymer composition and morphology impact molecular-scale force distributions.


block copolymers

Supplementary materials

Supporting Information: Effect of Polymer Composition and Morphology on Mechanochemical Activation in Nanostructured Triblock Copolymers
Details of the spiropyran synthesis, supplemental characterization data (1H-NMR, HRMS, SEC), details of the tensile setup, and additional tensile data and analysis including thickness normalization, onset point determination, and relaxation of mechanophores under strain.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.