Automated handling of complex chemical structures in Z-matrix coordinates - the chemcoord library

06 December 2022, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


In this work, we present a fully automated method for the construction of chemically meaningful sets of non-redundant internal coordinates (also commonly denoted as Z-matrices) from the cartesian coordinates of a molecular system. Particular focus is placed on avoiding ill-definitions of angles and dihedrals due to linear arrangements of atoms, to consistently guarantee a well-defined transformation to cartesian coordinates, even after structural changes. The representations thus obtained are particularly well suited for pathway construction in double-ended methods for transition state search and optimisations with non-linear constraints. Analytical gradients for the transformation between the coordinate systems were derived for the first time, which allows analytical geometry optimizations purely in Z-matrix coordinates. The geometry optimisation was coupled with a Symbolic Algebra package to support arbitrary non-linear constraints in Z-matrix coordinates, while retaining analytical energy gradient conversion. Sample applications are provided for a number of common chemical reactions and illustrative examples where these new algorithms can be used to automatically produce chemically reasonable structure interpolations, or to perform non-linearly constrained optimisations of molecules.


analytical gradients
geometry optimization
non-linear constraints

Supplementary materials

Supporting Information
The Supporting Information contains an example for a failing conversion between Cartesian and Z-matrix coordinates, and the analytical derivatives of the basis $\vb{B}$.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.