Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen

30 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The SARS-CoV-2 virus has been on a rampage for more than two years. Vaccines in combination with neutralizing antibodies (NAbs) against SARS-CoV-2 carry great hope in the treatment and final elimination of COVID-19. However, the relentless emergence of variants of concern (VOC), including the most recent Omicron variants, presses for novel measures to counter these variants that often show immune evasion. Hereby we developed a targeted photodynamic approach to neutralize SARS-CoV-2 by engineering a genetically encoded photosensitizer (SOPP3) to a diverse list of antibodies targeting the WT spike protein, including human antibodies isolated from a 2003 SARS patient, potent monomeric and multimeric nanobodies targeting RBD, and non-neutralizing antibodies (non-NAbs) targeting the more conserved NTD region. As confirmed by pseudovirus neutralization assay, this targeted photodynamic approach significantly increased the efficacy of these antibodies, especially that of non-NAbs, against not only the WT but also the Delta strain and the heavily immune escape Omicron strain (BA.1). Subsequent measurement of infrared phosphorescence at 1270 nm confirmed the generation of singlet oxygen (1O2) in the photodynamic process. Mass spectroscopy assay uncovered amino acids in the spike protein targeted by 1O2. Impressively, Y145 and H146 form an oxidization “hotspot”, which overlaps with the antigenic “supersite” in NTD. Taken together, our study established a targeted photodynamic approach against the SARS-CoV-2 virus and provided mechanistic insights into the photodynamic modification of protein molecules mediated by 1O2.

Keywords

photodynamic therapy
singlet oxygen
photosensitizer
SARS-CoV-2
antibody

Supplementary materials

Title
Description
Actions
Title
Supplementary Video
Description
S309-SOPP3
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.