Practical Stereocontrolled Access to Thioisosteres of Essential Signaling Molecules and Building Blocks for Life: Nucleoside Di- and Triphosphates

29 November 2022, Version 1

Abstract

Nucleoside diphosphates and triphosphates impact nearly every aspect of biochemistry, however, the use of such compounds as tools or medicinal leads for nucleotide-dependent enzymes and receptors is hampered due to rapid metabolism. Meanwhile, a successful strategy to address the instability of the monophosphate moiety in oligonucleotide therapeutics has been accomplished by their isosteric replacement with phosphorothioates. On the contrary, no practical methods exist to rapidly and controllably access stereopure di- and triphosphate thioisosteres of both natural and unnatural nucleosides. Here we show how a modular, reagent-based platform can enable the stereocontrolled and scalable synthesis of a library of such molecules. Such thioisosteric replacements can have profound effects on the potency and stability of lead candidates, as evidenced by data demonstrating that ligand-receptor interactions can be dramatically influenced by P-stereochemistry.

Keywords

Nucleotide
Isostere
Thiophosphate
Chiral
Stereocontrolled
Phosphorus Chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and Methods, Spectral Data, Optimization Details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.