Mechanism of Nitrogen-Carbon Bond Formation From Iron(IV) Disilylhydrazido Intermediates During N2 Reduction

23 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We recently reported a reaction sequence that activates C–H bonds in simple arenes as well as the N–N triple bond in N2, delivering the aryl group to N2 to form a new N–C bond. This enables the transformation of abundant feedstocks (arenes and N2) into N-containing organic compounds. The key N–C bond forming step occurs upon partial silylation of N2, which then can accept the aryl fragment. However, the pathway through which reduction, silylation, and migration occurred was unknown. Here we describe synthetic, structural, magnetic, spectroscopic, kinetic, and computational studies that elucidate the steps of this transformation. N2 must be silylated twice at the distal N atom before aryl migration can occur, and sequential silyl radical and silyl cation addition is a kinetically competent pathway to a formally iron(IV) intermediate with an NN(SiMe3)2 ligand. It can be isolated at low temperature. Kinetic studies show its first-order conversion to the migrated product, and DFT calculations indicate a concerted transition state for migration. The electronic structure of the formally iron(IV) intermediate is examined using DFT and CASSCF calculations, which reveal contributions from iron(II) and iron(III) resonance forms with oxidized NNSi2 ligands. The depletion of electron density from the Fe-coordinated N atom makes it electrophilic enough to accept the incoming aryl group. This unprecedented pathway for N–C bond formation offers a method for functionalizing N2 with organometallic chemistry.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Synthesis, Experimental Details, Computational Details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.