Data-driven Reaction Template Fingerprints

22 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemical reactions can be classified into distinct categories that encapsulate concepts for how one molecule is transformed into another. One can encode these concepts in rules specifying the set of atoms and bonds that change during a transformation, which is commonly known as a reaction template. While there exist multiple possibilities to represent a chemical reaction in a vector representation, or fingerprint, this is not the case for reaction templates. As a consequence, methods to navigate the space of reaction templates are limited. In this work, we introduce the first reaction template fingerprint. To this end, we follow a data-driven approach relying on a masked language modelling task on SMIRKS strings. We combine unsupervised pre-training with fine-tuning on the classification of templates according to the RXNO ontology, for which we achieve up to 98.4% classification accuracy. We highlight how the learned embeddings can be extracted and used in downstream applications.

Keywords

data-driven
reaction templates
fingerprints

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.