Revealing the Impact of Molecular Weight on Mixed Conduction in Glycolated Polythiophenes Through Electrolyte Choice

21 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Developing material design guidelines for organic mixed ionic–electronic conductors (OMIECs) is critical to enable high efficacy mixed transport within bioelectronics. One important feature which has yet to be thoroughly explored is the role of molecular weight on OMIEC performance. In this work, we examined a series of prototypical glycolated polythiophene materials (P3MEEET) with systematically increasing molecular weights within organic electrochemical transistors (OECTs) – a common testbed for investigating mixed transport. We find that there is improved performance beyond an intermediate molecular weight, however, this relationship is electrolyte dependent. Operando analysis suggests that the enhanced mobility at higher molecular weights may be negated by significant swelling when operated in NaCl due to disruption of intercrystallite charge percolation. The role of molecular weight is revealed through operation in KTFSI, as doping occurs through cation expulsion, preventing detrimental swelling and maintaining percolative pathways. These findings demonstrate the importance of both molecular weight and electrolyte composition to enhance the performance of OMIECs.

Keywords

OMIECs
Transistors
Molecular Weight
OECTs

Supplementary materials

Title
Description
Actions
Title
Manuscript SI
Description
Supporting Information for Manuscript
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.