Asymmetric C-Alkylation of Nitroalkanes via Enzymatic Photoredox Catalysis

17 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Tertiary nitroalkanes and the corresponding α-tertiary amines represent important motifs in bioactive molecules and natural prod-ucts. The C-alkylation of secondary nitroalkanes with electrophiles is a straightforward strategy for constructing tertiary nitroal-kanes, however, controlling the stereoselectivity of this type of reaction remains challenging. Here we report a highly chemo- and stereoselective C-alkylation of nitroalkanes with alkyl halides catalyzed by an engineered flavin-dependent ‘ene’-reductase (ERED). Directed evolution of the old yellow enzyme from Geobacillus kaustophilus provided a triple mutant, GkOYE-G7, capable of synthesizing tertiary nitroalkanes with high yield and enantioselectivity. Mechanistic studies indicate that the excitation of an enzyme-templated charge-transfer complex formed between the substrates and cofactor is responsible for radical initiation. Moreover, a single-enzyme two-mechanism cascade reaction was developed to prepare tertiary nitroalkanes from simple nitroal-kenes, highlighting the potential to use one enzyme for two mechanistically distinct reactions.

Supplementary materials

Title
Description
Actions
Title
Supplemental Information
Description
Experimental procedures, characterization data, NMR spectra, HPLC traces, and X-ray crystallographic data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.