ReOx as a Brønsted acidic modifier in glycerol hydrodeoxygenation: computational insight into the balance between acid and metal catalysis

16 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


A computational study for the competitive conversion of glycerol to 1,2-propanediol and 1,3-propanediol is presented, considering a two-step sequence of dehydration followed by hydrogenation. The elementary steps for dehydration, i.e., breaking of C–H followed by C–OH or vice versa, were studied computationally both on the Rh metal surface and the acid-modified ReOH–Rh surface in order to understand the role of the acid promoter. While the acid modifier can catalyze the C–OH cleavage, the activation energy for the C–H cleavage was found to be considerably smaller on both pure and acid-doped Rh(111) surfaces, and breaking the secondary C–H bond is kinetically favored over breaking the terminal C–H bond. This is in complete agreement with experimental protocols favoring the formation of 1,2-propanediol. Another potential feedstock, glycidol, was studied for the epoxide ring opening to yield 1,2-propanediol and 1,3-propanediol, and the reaction was found to be metal-catalyzed even in the presence of acid.


density functional theory
heterogeneous catalysis


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.