Effect of Particle Size and Pressure on the Transport Properties of the Fast Ion Conductor t-Li7SiPS8

11 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

All-solid-state batteries promise higher energy and power densities as well as increased safety compared to lithium ion batteries, by using non-flammable solid electrolytes and metallic lithium as the anode. As the liquid electrolyte is replaced by a solid electrolyte, ensuring permanent and close contact between the various components as well as between the individual particles is key for the long-term operation of a solid-state cell. Currently, there are few studies on how a solid-state electrolyte behaves when compressed by external pressure. Here we present a study in which the compression mechanics and ionic conductivity evolution of the fast solid-state conductor Li7SiPS8 were investigated under pressure on two samples with different particle sizes. In operando electrochemical impedance spectroscopy under pressure allows the determination of the activation volume of Li7SiPS8. In addition to the experiments under pressure, we show that the determined ionic conductivity additionally depends on the contact pressure. Furthermore, we simulate pelletizing using the discrete element method followed by finite volume analysis, where the effect of the pressure dependent microstructure can be distinguished from the atomistic effect of the activation volume. We conclude not only that the pelletizing pressure is an important parameter for describing the ionic conductivity of a solid, but also the particle size and morphology as well as the contact pressure during the measurement affect the impedance of a solid tablet. Furthermore, the relative density of a tablet is a weaker descriptor for the sample's impedance, compared to the particle size distribution.

Keywords

all solid-state battery
ionic conductivity
thiophosphates
impedance
pressure
particle size distribution

Supplementary materials

Title
Description
Actions
Title
Electronic supporting infromation
Description
Additional information on experiments, sample characteristics and modeling.
Actions
Title
DEM Powder compression simulation
Description
Video of DEM powder compression.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.