Importance of Dispersion in the Molecular Geometries of Mn(III) Spin Crossover Complexes

04 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report the computational investigation of the molecular geometries of a pair of manganese(III) spin crossover complexes. For the high-spin geometry, the density functionals significantly overestimate the Mn−Namine bond distances, although the geometry for the intermediate-spin is well-described. Comparisons with several wavefunction-based methods demonstrate that this error is due to the limited ability of density functional theory (DFT) to recover dispersion beyond a certain extent. Among the methods employed for geometry optimization, Møller-Plesset perturbation theory (MP2) appropriately describes the high-spin geometry, but results in a slightly reduced Mn−O distance in both the spin-states. On the other hand, complete active space second-order perturbation theory (CASPT2) results in a good description of the geometry for the intermediate spin state, but also sufficiently recovers dispersion performing well for the high-spin state. Despite the fact that the electronic structure of both spin states is dominated by one electron configuration, CASPT2 offers a balanced approach leading to molecular geometries with much better accuracy than MP2 and DFT. A scan along the Mn−Namine bond demonstrates that coupled cluster methods (i.e., DLPNO-CCSD(T)) also yield bond distances in agreement with experiment, while multiconfiguration pair density functional theory (MC-PDFT) is unable to recover dispersion well enough, analogous to single reference DFT.

Keywords

Geometries
DFT
MP2
CASPT2
Dispersion

Supplementary materials

Title
Description
Actions
Title
Supporting Information for: Importance of Dispersion in the Molecular Geometries of Mn(III) Spin Crossover Complexes
Description
This file contains additional figure and tables associated with the main manuscript.
Actions
Title
coordinates
Description
The zip file contains the coordinates of the optimized molecular geometries.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.