13C and 15N NMR Detection of Metabolites via Relayed Hyperpolarization at 1 T and 1.4 T

02 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nuclear-spin hyperpolarization allows various magnetic-resonance applications in chemistry and medicine that are unattainable by standard methods. For such applications, parahydrogen-based hyperpolarization approaches are particularly attractive because of their technical simplicity, low cost, and ability to quickly (in seconds) produce large volumes of hyperpolarized material. Although many parahydrogen-based techniques have emerged, some of them remain unexplored due to the lack of careful optimization studies. In this work, we investigate and optimize a novel parahydrogen-induced polarization (PHIP) technique that relies on proton exchange referred to below as PHIP-relay. An INEPT (insensitive nuclei enhanced by polarization transfer) sequence is employed to transfer polarization from hyperpolarized protons to heteronuclei (15N and 13C) and nuclear signals are detected using benchtop NMR spectrometers (1 T and 1.4 T, respectively). We demonstrate the applicability of the PHIP-relay technique for hyperpolarization of a wide range of biochemicals by examining such key metabolites as urea, ammonium, glucose, amino acid glycine, and a drug precursor benzamide. By optimizing chemical and NMR parameters of the PHIP-relay, we achieve a 17,100-fold enhancement of 15N signal of [13C, 15N2]-urea compared to the thermal signal measured at 1 T. We also show that repeated measurements with shorter exposure to parahydrogen provide a higher effective signal-to-noise ratio compared to longer parahydrogen bubbling.


parahydrogen induced polarization (PHIP)
NMR spectroscopy
imaging agents

Supplementary materials

Supplementary Information: 13C and 15N NMR Detection of Metabolites via Relayed Hyperpolarization at 1 T and 1.4 T
Kinetic study of hydrogenation reaction; Calculation of Optimal Delays for the INEPT Sequence; Calibration of the Magnetic Field Using Gaussmeter.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.