Spin Crossover Induced by Changing the Identity of the Secondary Metal Ion from PdII to NiII in a Face-Centered FeII8MII6 Cubic Cage

01 November 2022, Version 2

Abstract

The engineering of spin crossover (SCO) coordination cages is a complex endeavor with great potential in next generation multifunctional materials. Discrete metallosupramolecular cages exhibiting SCO are an exciting, though rare, class of porous polyhedral material. Incorporating the SCO property into these architectures is complicated, as there are many inter- and intramolecular factors which must be appropriately balanced. Previous investigations into the magnetic properties of a large cubic metallosupramolecular cage, [Fe8Pd6L8]28+, constructed using semi-rigid metalloligands, found that the Fe(II) centers that occupied the corners of the cubic structure did not undergo a spin transition. In this work, substitution of the linker metal on the face of the cage resulted in spin crossover behavior, as evidenced by magnetic susceptibility, Mӧssbauer and single crystal X-ray diffraction. Structural comparisons of these two cages were undertaken to shed light on the possible mechanism responsible for switching of the [Fe8MII6L8]28+ architecture from SCO inactive to active by simply changing the identity of M(II). This led to the suggestion that a possible interplay of intra- and intermolecular interactions may permit SCO in the Ni(II) analogue, 1. The distorted octahedral coordination environment of the secondary Ni(II) centers occupying the cage faces provided conformational flexibility for the eight metalloligands of the cubic architecture relative to the square planar Pd(II) environment. Meanwhile the occupation of axial coordination sites of the Ni(II) cations by CH3CN prevented the close packing of cages observed for the Pd(II) analogue, leading to a more offset, distant packing arrangement of cages in the lattice, whereby important areas of the cage that were shown to change most dramatically with SCO experienced a lesser degree of steric hindrance. Design via the effect of secondary metal centers on the flexibility of metalloligand structures and the effect of the axial donors on the packing arrangements may serve as new routes for engineering cage systems with desired magnetic properties.

Keywords

Spin Crossover
Coordination cage
heterometallic
metalloligand approach

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Physical measurements, crystallographic tables of complex, calculation of crystallographic parameters and magnetic susceptibility data, including Figures S1-S4 and Table S1
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.