Mechanical Evaluation of Hydrogel-Elastomer Interfaces Generated Through Thiol-Ene Coupling

31 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The formation of hybrid hydrogel-elastomer scaffolds is an attractive strategy for the formation of tissue engineering constructs and microfabricated platforms for advanced in vitro models. The emergence of thiol-ene coupling, in particular radical-based, for the engineering of cell-instructive hydrogels and the design of elastomers raises the possibility of mechanically integrating these structures, without relying on the introduction of additional chemical moieties. However, the bonding of hydrogels (thiol-ene radical or more classic acrylate/methacrylate radical-based) to thiol-ene elastomers and alkene-functional elastomers has not been characterised in detail. In this study, we quantify the tensile mechanical properties of hybrid hydrogel samples formed of two elastomers bonded to a hydrogel material. We examine the impact of radical thiol-ene coupling on the crosslinking of both elastomers (silicone or polyesters) and hydrogels (based on thiol-ene crosslinking or diacrylate chemistry), and on the mechanics and failure behaviour of resulting hybrids. This study demonstrates the strong bonding of thiol-ene hydrogels to alkene-presenting elastomers with a range of chemistries, including silicones and polyesters. Overall, thiol-ene coupling appears as an attractive tool for the generation of strong, mechanically integrated, hybrid structures for a broad range of applications.

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
Supplementary information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.