Re-envisioning the Design of Nanomedicines: Harnessing Automation and Artificial Intelligence

31 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Introduction Interest in nanomedicines has surged in recent years due to the critical role they have played in the COVID-19 pandemic. Nanoformulations can turn promising therapeutic cargo into viable products through improvements in drug safety and efficacy profiles. However, the developmental pathway for such formulations is non-trivial and largely reliant on trial-and-error. Beyond the costly demands on time and resources, this traditional approach may stunt innovation. The emergence of automation, artificial intelligence (AI) and machine learning (ML) tools, which are currently underutilized in pharmaceutical formulation development, offers a promising direction for an improved path in the design of nanomedicines. Areas covered This article highlights the potential of harnessing experimental automation and AI/ML to drive innovation in nanomedicine development. The discussion centers on the current challenges in drug formulation research and development, and the major advantages afforded through the application of data-driven methods. Expert opinion The development of integrated workflows based on automated experiments and AI/ML may accelerate nanomedicine development. A crucial step in achieving this is the generation of high-quality, accessible datasets. Future efforts to make full use of these tools can ultimately contribute to the development of more innovative nanomedicines and improved clinical translation of formulations that rely on advanced drug delivery systems.

Keywords

Artificial intelligence
Automation
Drug delivery
Machine learning
Nanomedicine
Pharmaceutical formulation development

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.