Exploring the effects of wetting and free fatty acid deposition on an atomistic hair fiber surface model incorporating Keratin Associated Protein 5-1

09 November 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The complex development of cosmetic and medical formulations relies on an ever-growing accuracy of predictive models of hair surfaces. Hitherto, modeling efforts have focused on the description of 18-methyl eicosanoic acid (18-MEA), the primary fatty acid covalently attached to the hair surface, without explicit modeling of the protein layer. Herein, the molecular details of the outermost surface of the human hair fiber surface, also called the F-layer, were studied using molecular dynamics (MD) simulations. The F-layer is composed primarily of Keratin associated proteins KAP5 and KAP10, which are decorated with 18-MEA on the outer surface of a hair fiber. In our molecular model, we incorporated KAP5-1, and evaluated the surface properties of 18-MEA through MD simulations, resulting in 18-MEA surface density, layer thickness, and tilt angles in agreement with previous experimental and computational studies. Subsequent models with reduced 18-MEA surface density were also generated to mimic damaged hair surfaces. Response to wetting of virgin and damaged hair showed rearrangement of 18-MEA on the surface, allowing for water penetration into the protein layer. To demonstrate a potential use case for these atomistic models, we deposited naturally occurring fatty acids and measured 18-MEA’s response in both dry and wet conditions. As fatty acids are often incorporated in shampoo formulations, this work demonstrates the ability to model adsorption of ingredients on hair surfaces. This study illustrates for the first time, the complex behavior of a realistic F-layer at the molecular level and opens the possibility of studying adsorption behavior of larger, more complex molecules and formulations.

Keywords

Molecular Dynamics
Hair Model
Keratin Associated Protein
Biological Interface

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.