Divergent Mechanistic Pathways for Copper(I) Hydrophosphination Catalysis: Understanding that Allows for Diastereoselective Hydrophosphination of a Tri-substituted Styrene

26 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Readily available and bench-stable Cu(acac)2 (1) addresses many challenges in exploratory hydrophosphination catalysis. Mechanistic investigations were performed to answer questions that remain about the reactivity of 1, the role of light in the catalysis, and to provide direction for further study. A divergent Hammett plot indicates differing mechanisms based on electron density at the alkene substrate. A radical process was eliminated based on trapping reactions and in-situ EPR experiments. Isotopic labeling experiments, a zwitterionic trapping experiment, stoichiometric model reactions, and catalytic reactions using proxy intermediates indicate that both conjugate addition and insertion-based mechanistic pathways occur with this system, depending on the unsaturated substrate. Computational analysis indicates that the lowest energy transition is a ligand-to-metal charge transfer (LMCT) from the phosphido ligand where the LUMO has significant Cu–P antibonding character, suggesting that a weakened Cu–P bond accelerates insertion under photocatalytic conditions. This hypothesis explains the greater activity of 1 compared to copper-catalyzed hydrophosphination reports and appears to be a general phenomenon for copper(I) catalysts. These results have been leveraged to achieve heretofore unknown catalytic hydrophosphination reactivity, namely the diastereoselective hydrophosphination of a tri-substituted styrene substrate.


copper catalysis

Supplementary materials

Supporting data


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.