Viologen Hydrothermal Synthesis and Structure-Property Relationships for Redox Flow Battery Optimization

19 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Aqueous organic redox flow batteries (AORFBs) are an emerging grid energy storage technology for fire safe grid energy storage systems with sustainable material feedstocks. Yet, designing organic redox molecules with the desired solubility, viscosity, permeability, formal potential, kinetics, and stability while remaining synthetically scalable is challenging. Herein, we demonstrate the adaptability of a single-step, high-yield hydrothermal reaction for viologen chloride salts, which have shown promise for pH neutral AORFB. Nine viologens, including five symmetric and four asymmetric, were synthesized in high purity for physiochemical and electrochemical characterization. New empirical insights are gleaned into fundamental structure-property relationships for multi-objective optimization. Ultimately, a new Dex-DiOH-Vi derivative showcased record viologen concentration of 2.5 M in an anolyte-limiting AORFB with 14-days of stable cycling performance. This work highlights the importance of designing efficient synthetic approaches of organic redox species for molecular engineering high-performance and sustainable flow battery electrolytes.


Flow battery

Supplementary materials

Supplemental Information for Viologen Hydrothermal Synthesis and Structure-Property Relationships for Redox Flow Battery Optimization
Synthetic routes and NMR data, physicochemical properties, CV and EIS data, kinetic degradation measurements, flow battery conditions


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.