Active Machine Learning for Chemical Engineers: a Bright Future Lies Ahead!

12 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

By combining machine learning with design of experiments, so-called active machine learning, more efficient and cheaper research can be conducted. Machine learning algorithms are more flexible, and are better at investigating the processes spanning all length scales of chemical engineering. While the active machine learning algorithms are maturing, its applications are lacking behind. Three types of challenges faced by active machine learning are identified and ways to overcome them are discussed: the convincing of the experimental researcher, the flexibility of data creation, and the robustness of the active machine learning algorithms. A bright future lies ahead for active machine learning in chemical engineering thanks to increasing automation and more efficient algorithms to drive novel discoveries.

Keywords

Active machine learning
Active learning
Bayesian optimization
Design-of-experiments

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.