Operando characterization and theoretical modelling of metal|electrolyte interphase growth kinetics in solid-state-batteries - Part II: Modelling

06 October 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding the interfacial dynamics of batteries is crucial to control degradation and increase electrochemical performance and cycling life. If the chemical potential of a negative electrode material lies outside of the stability window of an electrolyte (either solid or liquid), a decomposition layer (interphase) will form at the interface. To better understand and control degradation at interfaces in batteries, theoretical models describing the rate of formation of these interphases are required. This study focuses on the growth kinetics of the interphase forming between solid electrolytes and metallic negative electrodes in solid-state batteries. More specifically, we demonstrate that the rate of interphase formation and metal plating during charge can be accurately described by adapting the theory of coupled ion-electron transfer (CIET). The model is validated by fitting experimental data presented in the first part of this study. The data was collected operando as a Na metal layer was plated on top of a NaSICON solid electrolyte (Na3.4Zr2Si2.4P0.6O12 or NZSP) inside a XPS chamber. This study highlights the depth of information which can be extracted from this single operando experiment, and is widely applicable to other solid-state electrolyte systems.

Supplementary materials

Title
Description
Actions
Title
Supplementary information
Description
The file contains additional sets of equations and simulation data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.