Biological and Medicinal Chemistry

ChemSpacE: Interpretable and Interactive Chemical Space Exploration

Authors

Abstract

Discovering meaningful molecules in the vast combinatorial chemical space has been a long-standing challenge in many fields from materials science to drug discovery. Recent advances in machine learning, especially generative models, have made remarkable progress and demonstrate considerable promise for automated molecule design. Nevertheless, most molecule generative models remain black-box systems, whose utility is limited by a lack of interpretability and human participation in the generation process. In this work we propose Chemical Space Explorer (ChemSpacE), a simple yet effective method for exploring the chemical space with pre-trained deep generative models. It enables users to interact with existing generative models and inform the molecule generation process. We demonstrate the efficacy of ChemSpacE on the molecule optimization task and the molecule manipulation task in single property and multi-property settings. On the molecule optimization task, the performance of ChemSpacE is on par with previous black-box optimization methods yet is considerably faster and more sample efficient. Furthermore, the interface from ChemSpacE facilitates human-in-the-loop chemical space exploration and interactive molecule design.

Version notes

Added more experiments about molecule optimization, add descriptions about limitations and future works, polished the texts and added descriptions about how to achieve multi-property optimization/manipulation setting

Content

Thumbnail image of ChemSpacE_ChemRxiv.pdf