Crystallographic Study of Solvates and Solvate Hydrates of an Antibacterial Furazidin

05 October 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this study we present a detailed crystallographic analysis of multiple solvates of an antibacterial furazidin. Solvate formation of furazidin was investigated by crystallizing it from pure solvents and solvent-water mixtures. Crystal structure analysis of the obtained solvates and computational calculations were used to rationalize the main factors leading to the intermolecular interactions present in the solvate crystal structures as well as resulting in formation of the observed solvates and solvate hydrates. Furazidin forms pure solvates and solvate hydrates with solvents having large hydrogen bond acceptor propensity as well as with a hydrogen bond donor and acceptor formic acid. In solvate hydrates the incorporation of water allows formation of additional hydrogen bonds and results in more efficient hydrogen bond network in which water is “hooking” the organic solvent molecule, and this slightly reduces the cut-off of solvent hydrogen bond acceptor propensity required for obtaining a solvate. The crystal structures of all pure solvates are formed from molecule layers and in almost all structures solvent is hydrogen bonded to the furazidin, but the packing in each solvate is unique. In contrast, the hydrogen bonding and packing in most solvate hydrates are nearly identical.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Detailed and additional information on crystal structure determination. Additional results of crystal structure analysis and solvate formation of furazidin, as well as molecular packing in furazidin polymorphs.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.