Lithium Ferrocyanide Catholyte for High-Capacity Aqueous Redox Flow Batteries

29 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The design of electrolyte materials with both tunable redox potential and high solubility is critical for boosting the energy density of aqueous redox flow batteries (ARFBs) for stationary energy storage. A redox-active material lithium ferrocyanide (Li4[Fe(CN)6]) is designed. Li4[Fe(CN)6] has an improved solubility of 2.3 M compared to other ferrocyanide salts due to week intermolecular interactions. The constructed Li4[Fe(CN)6]-based ARFB system demonstrates high average capacity retention (nearly 100%) over 1365 hours and an unprecedented volumetric capacities up to 62.2 Ah/L in H2O. A zinc-ferricyanide (Zn/[Fe(CN)6]3-) ARFB, using a Nafion 117 membrane, achieves an unprecedented catholyte capacity of 61.4 Ah/L at neutral pH, surpassing the performance of most known ARFBs. In addition, the prepared ARFB shows a low electrolyte cost of $24 per kWh. This work provides a promising option for developing sustainable energy storage technology with high efficiency and a low cost.

Keywords

Aqueous Redox Flow Battery
Energy Storage
Intermolecular Interaction
Redox-active Material
Li4[Fe(CN)6]
Solubility

Supplementary materials

Title
Description
Actions
Title
Lithium Ferrocyanide Catholyte for High-Capacity Aqueous Redox Flow Batteries
Description
Mainly including the preparation of Li3[Fe(CN)6] and Li4[Fe(CN)6], the physicochemical properties of [Fe(CN)6]4-/3-based catholyte, based on Li4[Fe(CN)6 ] Half-cell ARFB study of catholyte and cost estimation of complete ARFB using Li4[Fe(CN)6] catholyte and Zn anolyte and performance comparison with other reported ferricyanide-based flow batteries, etc.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.