Rhodium-catalyzed Anti-Markovnikov Transfer Hydroiodination of Terminal Alkynes

23 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A rhodium-catalyzed anti-Markovnikov hydroiodination of aromatic and aliphatic terminal alkynes is reported. Depending on the choice of ligand and substrate, either (E)- or (Z)-configured alkenyl iodides are obtained in high to exclusive isomeric purity. The reaction exhibits a broad substrate scope and high functional group tolerance, employing easily accessible or commercially available aliphatic iodides as HI surrogates through a shuttle process. The synthesized vinyl iodides were applied in several C–C and C–heteroatom bond-forming reactions with full retention of the stereoselectivity. The developed method could be used to significantly shorten the total synthesis of a marine cis-fatty acid. Additionally, initial deuterium-labeling experiments and stoichiometric reactions shed some light on the potential reaction mechanism.

Keywords

shuttle catalysis • hydrofunctionalization • vinyl iodides • anti-Markovnikov selectivity • rhodium

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.